Data Labelers¶
Module to train and choose between structured and unstructured data labelers.
- dataprofiler.labelers.data_labelers.train_structured_labeler(data, default_label=None, save_dirpath=None, epochs=2)¶
Use provided data to create and save a structured data labeler.
- Parameters
data (Union[None, pd.DataFrame]) – data to be trained upon
save_dirpath (Union[None, str]) – path to save data labeler
epochs (int) – number of epochs to loop training the data
- Returns
- class dataprofiler.labelers.data_labelers.UnstructuredDataLabeler(dirpath=None, load_options=None)¶
Bases:
dataprofiler.labelers.base_data_labeler.BaseDataLabeler
BaseDataLabeler subclass specified as unstructured with internal variable.
Initialize DataLabeler class.
- Parameters
dirpath – path to data labeler
load_options – optional arguments to include for load i.e. class for model or processors
- add_label(label, same_as=None)¶
Add a label to the data labeler.
- Parameters
label (str) – new label being added to the data labeler
same_as (str) – label to have the same encoding index as for multi-label to single encoding index.
- Returns
None
- check_pipeline(skip_postprocessor=False, error_on_mismatch=False)¶
Check whether the processors and models connect together without error.
- Parameters
skip_postprocessor (bool) – skip checking postprocessor is valid in pipeline
error_on_mismatch (bool) – if true, errors instead of warns on parameter mismatches in pipeline
- Returns
bool indicating valid pipeline
- help()¶
Describe alterable parameters.
Input data formats for preprocessors. Output data formats for postprocessors.
- Returns
None
- property label_mapping¶
Retrieve the label encodings.
- Returns
dictionary for associating labels to indexes
- property labels¶
Retrieve the label.
- Returns
list of labels
- classmethod load_from_disk(dirpath, load_options=None)¶
Load the data labeler from a saved location on disk.
- Parameters
dirpath (str) – path to data labeler files.
load_options (dict) – optional arguments to include for load i.e. class for model or processors
- Returns
DataLabeler class
- classmethod load_from_library(name)¶
Load the data labeler from the data labeler zoo in the library.
- Parameters
name (str) – name of the data labeler.
- Returns
DataLabeler class
- classmethod load_with_components(preprocessor, model, postprocessor)¶
Load the data labeler from a its set of components.
- Parameters
preprocessor (data_processing.BaseDataPreprocessor) – processor to set as the preprocessor
model (base_model.BaseModel) – model to use within the data labeler
postprocessor (data_processing.BaseDataPostprocessor) – processor to set as the postprocessor
- Returns
- property model¶
Retrieve the data labeler model.
- Returns
returns the model instance
- property postprocessor¶
Retrieve the data postprocessor.
- Returns
returns the postprocessor instance
- predict(data, batch_size=32, predict_options=None, error_on_mismatch=False, verbose=1)¶
Predict labels of input data based with the data labeler model.
- Parameters
data – data to be predicted upon
batch_size – batch size of prediction
predict_options – optional parameters to allow for predict as a dict, i.e. dict(show_confidences=True)
error_on_mismatch – if true, errors instead of warns on parameter mismatches in pipeline
verbose – Flag to determine whether to print status or not
- Returns
predictions
- property preprocessor¶
Retrieve the data preprocessor.
- Returns
returns the preprocessor instance
- property reverse_label_mapping¶
Retrieve the index to label encoding.
- Returns
dictionary for associating indexes to labels
- save_to_disk(dirpath)¶
Save the data labeler to the specified location.
- Parameters
dirpath (str) – location to save the data labeler.
- Returns
None
- set_labels(labels)¶
Set the labels for the data labeler.
- Parameters
labels (list or dict) – new labels in either encoding list or dict
- Returns
None
- set_model(model)¶
Set the model for the data labeler.
- Parameters
model (base_model.BaseModel) – model to use within the data labeler
- Returns
None
- set_params(params)¶
Allow user to set parameters of pipeline components.
- Done in the following format:
- params = dict(
preprocessor=dict(…), model=dict(…), postprocessor=dict(…)
)
where the key,values pairs for each pipeline component must match parameters that exist in their components.
- Parameters
params (dict) –
dictionary containing a key for a given pipeline component and its associated value of parameters as such:
dict(preprocessor=dict(…), model=dict(…), postprocessor=dict(…))
- Returns
None
- set_postprocessor(data_processor)¶
Set the data postprocessor for the data labeler.
- Parameters
data_processor (data_processing.BaseDataPostprocessor) – processor to set as the postprocessor
- Returns
None
- set_preprocessor(data_processor)¶
Set the data preprocessor for the data labeler.
- Parameters
data_processor (data_processing.BaseDataPreprocessor) – processor to set as the preprocessor
- Returns
None
- class dataprofiler.labelers.data_labelers.StructuredDataLabeler(dirpath=None, load_options=None)¶
Bases:
dataprofiler.labelers.base_data_labeler.BaseDataLabeler
BaseDataLabeler subclass specified as structured with internal variable.
Initialize DataLabeler class.
- Parameters
dirpath – path to data labeler
load_options – optional arguments to include for load i.e. class for model or processors
- add_label(label, same_as=None)¶
Add a label to the data labeler.
- Parameters
label (str) – new label being added to the data labeler
same_as (str) – label to have the same encoding index as for multi-label to single encoding index.
- Returns
None
- check_pipeline(skip_postprocessor=False, error_on_mismatch=False)¶
Check whether the processors and models connect together without error.
- Parameters
skip_postprocessor (bool) – skip checking postprocessor is valid in pipeline
error_on_mismatch (bool) – if true, errors instead of warns on parameter mismatches in pipeline
- Returns
bool indicating valid pipeline
- help()¶
Describe alterable parameters.
Input data formats for preprocessors. Output data formats for postprocessors.
- Returns
None
- property label_mapping¶
Retrieve the label encodings.
- Returns
dictionary for associating labels to indexes
- property labels¶
Retrieve the label.
- Returns
list of labels
- classmethod load_from_disk(dirpath, load_options=None)¶
Load the data labeler from a saved location on disk.
- Parameters
dirpath (str) – path to data labeler files.
load_options (dict) – optional arguments to include for load i.e. class for model or processors
- Returns
DataLabeler class
- classmethod load_from_library(name)¶
Load the data labeler from the data labeler zoo in the library.
- Parameters
name (str) – name of the data labeler.
- Returns
DataLabeler class
- classmethod load_with_components(preprocessor, model, postprocessor)¶
Load the data labeler from a its set of components.
- Parameters
preprocessor (data_processing.BaseDataPreprocessor) – processor to set as the preprocessor
model (base_model.BaseModel) – model to use within the data labeler
postprocessor (data_processing.BaseDataPostprocessor) – processor to set as the postprocessor
- Returns
- property model¶
Retrieve the data labeler model.
- Returns
returns the model instance
- property postprocessor¶
Retrieve the data postprocessor.
- Returns
returns the postprocessor instance
- predict(data, batch_size=32, predict_options=None, error_on_mismatch=False, verbose=1)¶
Predict labels of input data based with the data labeler model.
- Parameters
data – data to be predicted upon
batch_size – batch size of prediction
predict_options – optional parameters to allow for predict as a dict, i.e. dict(show_confidences=True)
error_on_mismatch – if true, errors instead of warns on parameter mismatches in pipeline
verbose – Flag to determine whether to print status or not
- Returns
predictions
- property preprocessor¶
Retrieve the data preprocessor.
- Returns
returns the preprocessor instance
- property reverse_label_mapping¶
Retrieve the index to label encoding.
- Returns
dictionary for associating indexes to labels
- save_to_disk(dirpath)¶
Save the data labeler to the specified location.
- Parameters
dirpath (str) – location to save the data labeler.
- Returns
None
- set_labels(labels)¶
Set the labels for the data labeler.
- Parameters
labels (list or dict) – new labels in either encoding list or dict
- Returns
None
- set_model(model)¶
Set the model for the data labeler.
- Parameters
model (base_model.BaseModel) – model to use within the data labeler
- Returns
None
- set_params(params)¶
Allow user to set parameters of pipeline components.
- Done in the following format:
- params = dict(
preprocessor=dict(…), model=dict(…), postprocessor=dict(…)
)
where the key,values pairs for each pipeline component must match parameters that exist in their components.
- Parameters
params (dict) –
dictionary containing a key for a given pipeline component and its associated value of parameters as such:
dict(preprocessor=dict(…), model=dict(…), postprocessor=dict(…))
- Returns
None
- set_postprocessor(data_processor)¶
Set the data postprocessor for the data labeler.
- Parameters
data_processor (data_processing.BaseDataPostprocessor) – processor to set as the postprocessor
- Returns
None
- set_preprocessor(data_processor)¶
Set the data preprocessor for the data labeler.
- Parameters
data_processor (data_processing.BaseDataPreprocessor) – processor to set as the preprocessor
- Returns
None
- class dataprofiler.labelers.data_labelers.DataLabeler(labeler_type, dirpath=None, load_options=None, trainable=False)¶
Bases:
object
Wrapper class for choosing between structured and unstructured labeler.
Create structured and unstructred data labeler objects.
- Parameters
dirpath (Any) – Path to load data labeler
load_options (Any) – Optional arguments to include for load.
trainable (bool) – variable to dictate whether you want a trainable data labeler
- Returns
- labeler_classes = {'structured': <class 'dataprofiler.labelers.data_labelers.StructuredDataLabeler'>, 'unstructured': <class 'dataprofiler.labelers.data_labelers.UnstructuredDataLabeler'>}¶
- classmethod load_from_library(name, trainable=False)¶
Load the data labeler from the data labeler zoo in the library.
- Parameters
name (str) – name of the data labeler.
trainable (bool) – variable to dictate whether you want a trainable data labeler
- Returns
DataLabeler class
- classmethod load_from_disk(dirpath, load_options=None, trainable=False)¶
Load the data labeler from a saved location on disk.
- Parameters
dirpath (str) – path to data labeler files.
load_options (dict) – optional arguments to include for load i.e. class for model or processors
trainable (bool) – variable to dictate whether you want a trainable data labeler
- Returns
DataLabeler class
- classmethod load_with_components(preprocessor, model, postprocessor, trainable=False)¶
Load the data labeler from a its set of components.
- Parameters
preprocessor (data_processing.BaseDataPreprocessor) – processor to set as the preprocessor
model (base_model.BaseModel) – model to use within the data labeler
postprocessor (data_processing.BaseDataPostprocessor) – processor to set as the postprocessor
trainable (bool) – variable to dictate whether you want a trainable data labeler
- Returns