Float Column Profile¶
- class dataprofiler.profilers.float_column_profile.FloatColumn(name, options=None)¶
Bases:
dataprofiler.profilers.numerical_column_stats.NumericStatsMixin
,dataprofiler.profilers.base_column_profilers.BaseColumnPrimitiveTypeProfiler
Float column profile mixin with of numerical stats. Represents a column in the dataset which is a float column.
Initialization of column base properties and itself. :param name: Name of the data :type name: String :param options: Options for the float column :type options: FloatOptions
- type = 'float'¶
- diff(other_profile, options=None)¶
Finds the differences for FloatColumns.
- Parameters
other_profile (FloatColumn) – profile to find the difference with
- Returns
the FloatColumn differences
- Return type
dict
- property profile¶
Property for profile. Returns the profile of the column. :return:
- property precision¶
Property reporting statistics on the significant figures of each element in the data. :return: Precision statistics :rtype: dict
- property data_type_ratio¶
Calculates the ratio of samples which match this data type. :return: ratio of data type :rtype: float
- col_type = None¶
- static is_float(x)¶
For “0.80” this function returns True For “1.00” this function returns True For “1” this function returns True
- Parameters
x (str) – string to test
- Returns
if is float or not
- Return type
bool
- static is_int(x)¶
For “0.80” This function returns False For “1.00” This function returns True For “1” this function returns True
- Parameters
x (str) – string to test
- Returns
if is integer or not
- Return type
bool
- property kurtosis¶
- property mean¶
- property median¶
Estimates the median of the data.
- Returns
the median
- Return type
float
- property median_abs_deviation¶
- Get median absolute deviation estimated from the histogram of the data
Subtract bin edges from the median value Fold the histogram to positive and negative parts around zero Impose the two bin edges from the two histogram Calculate the counts for the two histograms with the imposed bin edges Superimpose the counts from the two histograms Interpolate the median absolute deviation from the superimposed counts
- Returns
median absolute deviation
- property mode¶
Finds an estimate for the mode(s) of the data.
- Returns
the mode(s) of the data
- Return type
list(float)
- static np_type_to_type(val)¶
Converts numpy variables to base python type variables
- Parameters
val (numpy type or base type) – value to check & change
- Return val
base python type
- Rtype val
int or float
- property skewness¶
- property stddev¶
- update(df_series)¶
Updates the column profile. :param df_series: df series :type df_series: pandas.core.series.Series :return: None
- property variance¶