Data Labeler Column Profile¶
- class dataprofiler.profilers.data_labeler_column_profile.DataLabelerColumn(name, options=None)¶
Bases:
dataprofiler.profilers.base_column_profilers.BaseColumnProfiler
Initialization of Data Label profiling for structured datasets.
- Parameters
name (String) – name of column being profiled
options (DataLabelerOptions) – Options for the data labeler column
- type = 'data_labeler'¶
- static assert_equal_conditions(data_labeler, data_labeler2)¶
Ensures data labelers have the same values. Raises error otherwise.
- Parameters
data_labeler (DataLabelerColumn) – first data_labeler
data_labeler2 (DataLabelerColumn) – second data_labeler
- Returns
None
- property data_label¶
Returns the data labels which best fit the data it has seen based on the DataLabeler used. Data labels must be within the minimum probability differential of the top predicted value. If nothing is more than minimum top label value, it says it could not determine the data label.
- property avg_predictions¶
Averages all sample predictions for each data label.
- property label_representation¶
Representation of label found within the dataset based on ranked voting. When top_k=1, this is simply the distribution of data labels found within the dataset.
- property profile¶
Property for profile. Returns the profile of the column.
- report(remove_disabled_flag=False)¶
Private abstract method for returning report.
- Parameters
remove_disabled_flag (boolean) – flag to determine if disabled options should be excluded in the report.
- col_type = None¶
- diff(other_profile, options=None)¶
Generates the differences between the orders of two DataLabeler columns
- Returns
Dict containing the differences between orders in their
appropriate output formats :rtype: dict
- update(df_series)¶
Updates the column profile.
- Parameters
df_series (pandas.core.series.Series) – df series
- Returns
None