Data Profiler | What’s in your data?

Purpose

The DataProfiler is a Python library designed to make data analysis, monitoring and sensitive data detection easy.

Loading Data with a single command, the library automatically formats & loads files into a DataFrame. Profiling the Data, the library identifies the schema, statistics, entities and more. Data Profiles can then be used in downstream applications or reports.

The Data Profiler comes with a cutting edge pre-trained deep learning model, used to efficiently identify sensitive data (or PII). If customization is needed, it’s easy to add new entities to the existing pre-trained model or insert a new pipeline for entity recognition.

The best part? Getting started only takes a few lines of code (Example CSV):

import json
from dataprofiler import Data, Profiler

data = Data("your_file.csv") # Auto-Detect & Load: CSV, AVRO, Parquet, JSON, Text
print(data.data.head(5)) # Access data directly via a compatible Pandas DataFrame

profile = Profiler(data) # Calculate Statistics, Entity Recognition, etc
readable_report = profile.report(report_options={"output_format":"pretty"})
print(json.dumps(readable_report, indent=4))

To install the full package from pypi:

pip install DataProfiler[full]

If the ML requirements are too strict (say, you don’t want to install tensorflow), you can install a slimmer package. The slimmer package disables the default sensitive data detection / entity recognition (labler)

Install from pypi:

pip install DataProfiler

If you have suggestions or find a bug, please open an issue.

Visit the API to explore Data Profiler’s terminology.

What is a Data Profile?

In the case of this library, a data profile is a dictionary containing statistics and predictions about the underlying dataset. There are “global statistics” or global_stats, which contain dataset level data and there are “column/row level statistics” or data_stats (each column is a new key-value entry).

The format for a structured profile is below:

"global_stats": {
    "samples_used": int,
    "column_count": int,
    "row_count": int,
    "row_has_null_ratio": float,
    "row_is_null_ratio": float,
    "unique_row_ratio": float,
    "duplicate_row_count": int,
    "file_type": string,
    "encoding": string,
    "correlation_matrix": list[list[int]], (*)
    "chi2_matrix": list[list[float]],
    "profile_schema": dict[string, list[int]]
},
"data_stats": [
    {
        "column_name": string,
        "data_type": string,
        "data_label": string,
        "categorical": bool,
        "order": string,
        "samples": list[str],
        "statistics": {
            "sample_size": int,
            "null_count": int,
            "null_types": list[string],
            "null_types_index": dict[string, list[int]],
            "data_type_representation": dict[string, list[string]],
            "min": [null, float],
            "max": [null, float],
            "sum": float,
            "mode": list[float],
            "median": float,
            "median_absolute_deviation": float,
            "mean": float,
            "variance": float,
            "stddev": float,
            "skewness": float,
            "kurtosis": float,
            "num_zeros": int,
            "num_negatives": int,
            "histogram": {
                "bin_counts": list[int],
                "bin_edges": list[float],
            },
            "quantiles": {
                int: float
            },
            "vocab": list[char],
            "avg_predictions": dict[string, float],
            "data_label_representation": dict[string, float],
            "categories": list[str],
            "unique_count": int,
            "unique_ratio": float,
            "categorical_count": dict[string, int],
            "gini_impurity": float,
            "unalikeability": float,
            "precision": {
                'min': int,
                'max': int,
                'mean': float,
                'var': float,
                'std': float,
                'sample_size': int,
                'margin_of_error': float,
                'confidence_level': float
            },
            "times": dict[string, float],
            "format": string
        }
    }
]

(*) Currently the correlation matrix update is toggled off. It will be reset in a later update. Users can still use it as desired with the is_enable option set to True.

The format for an unstructured profile is below:

"global_stats": {
    "samples_used": int,
    "empty_line_count": int,
    "file_type": string,
    "encoding": string,
    "memory_size": float, # in MB
},
"data_stats": {
    "data_label": {
        "entity_counts": {
            "word_level": dict[string, int],
            "true_char_level": dict[string, int],
            "postprocess_char_level": dict[string, int]
        },
        "entity_percentages": {
            "word_level": dict[string, float],
            "true_char_level": dict[string, float],
            "postprocess_char_level": dict[string, float]
        },
        "times": dict[string, float]
    },
    "statistics": {
        "vocab": list[char],
        "vocab_count": dict[string, int],
        "words": list[string],
        "word_count": dict[string, int],
        "times": dict[string, float]
    }
}

Supported Data Formats

  • Any delimited file (CSV, TSV, etc.)

  • JSON object

  • Avro file

  • Parquet file

  • Text file

  • Pandas DataFrame

  • A URL that points to one of the supported file types above

Data Labels

Data Labels are determined per cell for structured data (column/row when the profiler is used) or at the character level for unstructured data.

  • UNKNOWN

  • ADDRESS

  • BAN (bank account number, 10-18 digits)

  • CREDIT_CARD

  • EMAIL_ADDRESS

  • UUID

  • HASH_OR_KEY (md5, sha1, sha256, random hash, etc.)

  • IPV4

  • IPV6

  • MAC_ADDRESS

  • PERSON

  • PHONE_NUMBER

  • SSN

  • URL

  • US_STATE

  • DRIVERS_LICENSE

  • DATE

  • TIME

  • DATETIME

  • INTEGER

  • FLOAT

  • QUANTITY

  • ORDINAL

Get Started

Load a File

The profiler should automatically identify the file type and load the data into a Data Class.

Along with other attributtes the Data class enables structured data to be accessed via a valid Pandas DataFrame.

# Load a csv file, return a CSVData object
csv_data = Data('your_file.csv')

# Print the first 10 rows of the csv file
print(csv_data.data.head(10))

# Load a parquet file, return a ParquetData object
parquet_data = Data('your_file.parquet')

# Sort the data by the name column
parquet_data.data.sort_values(by='name', inplace=True)

# Print the sorted first 10 rows of the parquet data
print(parquet_data.data.head(10))

If the file type is not automatically identified (rare), you can specify them specifically, see section Data Readers.

Profile a File

Example uses a CSV file for example, but CSV, JSON, Avro, Parquet or Text should also work.

import json
from dataprofiler import Data, Profiler

# Load file (CSV should be automatically identified)
data = Data("your_file.csv")

# Profile the dataset
profile = Profiler(data)

# Generate a report and use json to prettify.
report  = profile.report(report_options={"output_format":"pretty"})

# Print the report
print(json.dumps(report, indent=4))

Updating Profiles

Currently, the data profiler is equipped to update its profile in batches.

import json
from dataprofiler import Data, Profiler

# Load and profile a CSV file
data = Data("your_file.csv")
profile = Profiler(data)

# Update the profile with new data:
new_data = Data("new_data.csv")
profile.update_profile(new_data)

# Print the report using json to prettify.
report  = profile.report(report_options={"output_format":"pretty"})
print(json.dumps(report, indent=4))

Merging Profiles

If you have two files with the same schema (but different data), it is possible to merge the two profiles together via an addition operator.

This also enables profiles to be determined in a distributed manner.

import json
from dataprofiler import Data, Profiler

# Load a CSV file with a schema
data1 = Data("file_a.csv")
profile1 = Profiler(data)

# Load another CSV file with the same schema
data2 = Data("file_b.csv")
profile2 = Profiler(data)

profile3 = profile1 + profile2

# Print the report using json to prettify.
report  = profile3.report(report_options={"output_format":"pretty"})
print(json.dumps(report, indent=4))

Profile a Pandas DataFrame

import pandas as pd
import dataprofiler as dp
import json

my_dataframe = pd.DataFrame([[1, 2.0],[1, 2.2],[-1, 3]])
profile = dp.Profiler(my_dataframe)

# print the report using json to prettify.
report = profile.report(report_options={"output_format":"pretty"})
print(json.dumps(report, indent=4))

# read a specified column, in this case it is labeled 0:
print(json.dumps(report["data stats"][0], indent=4))

Unstructured Profiler

In addition to the structured profiler, the Data Profiler provides unstructured profiling for the TextData object or string. Unstructured profiling also works with list(string), pd.Series(string) or pd.DataFrame(string) given profiler_type option specified as unstructured. Below is an example of unstructured profile with a text file.

import dataprofiler as dp
import json
my_text = dp.Data('text_file.txt')
profile = dp.Profiler(my_text)

# print the report using json to prettify.
report = profile.report(report_options={"output_format":"pretty"})
print(json.dumps(report, indent=4))

Another example of unstructured profile with pd.Series of string is given as below

import dataprofiler as dp
import pandas as pd
import json

text_data = pd.Series(['first string', 'second string'])
profile = dp.Profiler(text_data, profiler_type="unstructured")

# print the report using json to prettify.
report = profile.report(report_options={"output_format":"pretty"})
print(json.dumps(report, indent=4))

Specifying a Filetype or Delimiter

Example of specifying a CSV data type, with a , delimiter. In addition, it utilizes only the first 10,000 rows.

import json
import os
from dataprofiler import Data, Profiler
from dataprofiler.data_readers.csv_data import CSVData

# Load a CSV file, with "," as the delimiter
data = CSVData("your_file.csv", options={"delimiter": ","})

# Split the data, such that only the first 10,000 rows are used
data = data.data[0:10000]

# Read in profile and print results
profile = Profiler(data)
print(json.dumps(profile.report(report_options={"output_format":"pretty"}), indent=4))

Versions