Text Data

Contains class for saving and loading text files.

class dataprofiler.data_readers.text_data.TextData(input_file_path: Optional[str] = None, data: Optional[List[str]] = None, options: Optional[Dict] = None)

Bases: dataprofiler.data_readers.base_data.BaseData

TextData class to save and load text files.

Initialize Data class for loading datasets of type TEXT.

Can be specified by passing in memory data or via a file path. Options pertaining the TEXT may also be specified using the options dict parameter. Possible Options:

options = dict(
    data_format= type: str, choices: "text"
    samples_per_line= type: int
)

data_format: user selected format in which to return data can only be of specified types samples_per_line: chunks by which to read in the specified dataset

Parameters
  • input_file_path (str) – path to the file being loaded or None

  • data (multiple types) – data being loaded into the class instead of an input file

  • options (dict) – options pertaining to the data type

Returns

None

data_type: str = 'text'
property samples_per_line: int

Return samples per line.

property is_structured: bool

Determine compatibility with StructuredProfiler.

tokenize() None

Tokenize data.

classmethod is_match(file_path: str, options: Optional[Dict] = None) bool

Return True if all are text files.

Parameters
  • file_path (str) – path to the file to be examined

  • options (dict) – text file read options

Returns

is file a text file or not

Return type

bool

reload(input_file_path: Optional[str] = None, data: Optional[List[str]] = None, options: Optional[Dict] = None) None

Reload the data class with a new dataset.

This erases all existing data/options and replaces it with the input data/options.

Parameters
  • input_file_path (str) – path to the file being loaded or None

  • data (multiple types) – data being loaded into the class instead of an input file

  • options (dict) – options pertaining to the data type

Returns

None

property data

Return data.

property data_format: Optional[str]

Return data format.

property file_encoding: Optional[str]

Return file encoding.

get_batch_generator(batch_size: int) Generator[Union[pandas.core.frame.DataFrame, List], None, None]

Get batch generator.

info: Optional[str] = None
property length: int

Return the length of the dataset which is loaded.

Returns

length of the dataset

options: Optional[Dict]