Data Labeler Column Profile

Contains class for for profiling data labeler col.

class dataprofiler.profilers.data_labeler_column_profile.DataLabelerColumn(name: Optional[str], options: Optional[dataprofiler.profilers.profiler_options.DataLabelerOptions] = None)

Bases: dataprofiler.profilers.base_column_profilers.BaseColumnProfiler

Sublass of BaseColumnProfiler for profiling data labeler col.

Initialize Data Label profiling for structured datasets.

Parameters
  • name (String) – name of column being profiled

  • options (DataLabelerOptions) – Options for the data labeler column

type = 'data_labeler'
thread_safe: bool
static assert_equal_conditions(data_labeler: dataprofiler.profilers.data_labeler_column_profile.DataLabelerColumn, data_labeler2: dataprofiler.profilers.data_labeler_column_profile.DataLabelerColumn) None

Ensure data labelers have the same values. Raise error otherwise.

Parameters
Returns

None

property reverse_label_mapping: Dict

Return reverse label mapping.

property possible_data_labels: List[str]

Return possible data labels.

property rank_distribution: Dict[str, int]

Return rank distribution.

property sum_predictions: numpy.ndarray

Sum predictions.

property data_label: Optional[str]

Return data labels which best fit data it has seen based on DataLabeler used.

Data labels must be within the minimum probability differential of the top predicted value. If nothing is more than minimum top label value, it says it could not determine the data label.

property avg_predictions: Optional[Dict[str, float]]

Average all sample predictions for each data label.

property label_representation: Optional[Dict[str, float]]

Represent label found within the dataset based on ranked voting.

When top_k=1, this is simply the distribution of data labels found within the dataset.

property profile: Dict

Return the profile of the column.

report(remove_disabled_flag: bool = False) Dict

Return report.

Private abstract method.

Parameters

remove_disabled_flag (boolean) – flag to determine if disabled options should be excluded in the report.

col_type = None
diff(other_profile: dataprofiler.profilers.data_labeler_column_profile.DataLabelerColumn, options: Optional[Dict] = None) Dict

Generate differences between the orders of two DataLabeler columns.

Returns

Dict containing the differences between orders in their

appropriate output formats :rtype: dict

name: Optional[str]
sample_size: int
metadata: Dict
times: Dict
update(df_series: pandas.core.series.Series) dataprofiler.profilers.data_labeler_column_profile.DataLabelerColumn

Update the column profile.

Parameters

df_series (pandas.core.series.Series) – df series

Returns

updated DataLabelerColumn

Return type

DataLabelerColumn