datacompy package

Subpackages

Submodules

datacompy.base module

Compare two Pandas DataFrames.

Originally this package was meant to provide similar functionality to PROC COMPARE in SAS - i.e. human-readable reporting on the difference between two dataframes.

class datacompy.base.BaseCompare

Bases: ABC

Base comparison class.

abstract all_columns_match() bool

Check if all columns match.

abstract all_mismatch(ignore_matching_cols: bool = False) Any

Get all rows that mismatch.

abstract all_rows_overlap() bool

Check if all rows overlap.

abstract count_matching_rows() int

Count the number of matchin grows.

abstract property df1: Any

Get the first dataframe.

abstract df1_unq_columns() OrderedSet[str]

Get columns that are unique to df1.

abstract property df2: Any

Get the second dataframe.

abstract df2_unq_columns() OrderedSet[str]

Get columns that are unique to df2.

abstract intersect_columns() OrderedSet[str]

Get columns that are shared between the two dataframes.

abstract intersect_rows_match() bool

Check if the intersection of rows match.

abstract matches(ignore_extra_columns: bool = False) bool

Check if the dataframes match.

abstract report(sample_count: int = 10, column_count: int = 10, html_file: str | None = None) str

Return a string representation of a report.

abstract sample_mismatch(column: str, sample_count: int = 10, for_display: bool = False) Any

Get a sample of rows that mismatch.

abstract subset() bool

Check if one dataframe is a subset of the other.

datacompy.base.temp_column_name(*dataframes) str

Get a temp column name that isn’t included in columns of any dataframes.

Parameters:

dataframes (list of DataFrames) – The DataFrames to create a temporary column name for

Returns:

String column name that looks like ‘_temp_x’ for some integer x

Return type:

str

datacompy.core module

Compare two Pandas DataFrames.

Originally this package was meant to provide similar functionality to PROC COMPARE in SAS - i.e. human-readable reporting on the difference between two dataframes.

class datacompy.core.Compare(df1: DataFrame, df2: DataFrame, join_columns: List[str] | str | None = None, on_index: bool = False, abs_tol: float = 0, rel_tol: float = 0, df1_name: str = 'df1', df2_name: str = 'df2', ignore_spaces: bool = False, ignore_case: bool = False, cast_column_names_lower: bool = True)

Bases: BaseCompare

Comparison class to be used to compare whether two dataframes as equal.

Both df1 and df2 should be dataframes containing all of the join_columns, with unique column names. Differences between values are compared to abs_tol + rel_tol * abs(df2[‘value’]).

Parameters:
  • df1 (pandas DataFrame) – First dataframe to check

  • df2 (pandas DataFrame) – Second dataframe to check

  • join_columns (list or str, optional) – Column(s) to join dataframes on. If a string is passed in, that one column will be used.

  • on_index (bool, optional) – If True, the index will be used to join the two dataframes. If both join_columns and on_index are provided, an exception will be raised.

  • abs_tol (float, optional) – Absolute tolerance between two values.

  • rel_tol (float, optional) – Relative tolerance between two values.

  • df1_name (str, optional) – A string name for the first dataframe. This allows the reporting to print out an actual name instead of “df1”, and allows human users to more easily track the dataframes.

  • df2_name (str, optional) – A string name for the second dataframe

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns (including any join columns)

  • ignore_case (bool, optional) – Flag to ignore the case of string columns

  • cast_column_names_lower (bool, optional) – Boolean indicator that controls of column names will be cast into lower case

Variables:
  • df1_unq_rows (pandas DataFrame) – All records that are only in df1 (based on a join on join_columns)

  • df2_unq_rows (pandas DataFrame) – All records that are only in df2 (based on a join on join_columns)

all_columns_match() bool

Whether the columns all match in the dataframes.

all_mismatch(ignore_matching_cols: bool = False) DataFrame

Get all rows with any columns that have a mismatch.

Returns all df1 and df2 versions of the columns and join columns.

Parameters:

ignore_matching_cols (bool, optional) – Whether showing the matching columns in the output or not. The default is False.

Returns:

All rows of the intersection dataframe, containing any columns, that don’t match.

Return type:

Pandas.DataFrame

all_rows_overlap() bool

Whether the rows are all present in both dataframes.

Returns:

True if all rows in df1 are in df2 and vice versa (based on existence for join option)

Return type:

bool

count_matching_rows() int

Count the number of rows match (on overlapping fields).

Returns:

Number of matching rows

Return type:

int

property df1: DataFrame

Get the first dataframe.

df1_unq_columns() OrderedSet[str]

Get columns that are unique to df1.

property df2: DataFrame

Get the second dataframe.

df2_unq_columns() OrderedSet[str]

Get columns that are unique to df2.

intersect_columns() OrderedSet[str]

Get columns that are shared between the two dataframes.

intersect_rows_match() bool

Check whether the intersect rows all match.

matches(ignore_extra_columns: bool = False) bool

Return True or False if the dataframes match.

Parameters:

ignore_extra_columns (bool) – Ignores any columns in one dataframe and not in the other.

Returns:

True or False if the dataframes match.

Return type:

bool

report(sample_count: int = 10, column_count: int = 10, html_file: str | None = None) str

Return a string representation of a report.

The representation can then be printed or saved to a file.

Parameters:
  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • column_count (int, optional) – The number of columns to display in the sample records output. Defaults to 10.

  • html_file (str, optional) – HTML file name to save report output to. If None the file creation will be skipped.

Returns:

The report, formatted kinda nicely.

Return type:

str

sample_mismatch(column: str, sample_count: int = 10, for_display: bool = False) DataFrame

Return sample mismatches.

Gets a sub-dataframe which contains the identifying columns, and df1 and df2 versions of the column.

Parameters:
  • column (str) – The raw column name (i.e. without _df1 appended)

  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • for_display (bool, optional) – Whether this is just going to be used for display (overwrite the column names)

Returns:

A sample of the intersection dataframe, containing only the “pertinent” columns, for rows that don’t match on the provided column.

Return type:

Pandas.DataFrame

subset() bool

Return True if dataframe 2 is a subset of dataframe 1.

Dataframe 2 is considered a subset if all of its columns are in dataframe 1, and all of its rows match rows in dataframe 1 for the shared columns.

Returns:

True if dataframe 2 is a subset of dataframe 1.

Return type:

bool

datacompy.core.calculate_max_diff(col_1: SeriesType[Any], col_2: SeriesType[Any]) float

Get a maximum difference between two columns.

Parameters:
  • col_1 (Pandas.Series) – The first column

  • col_2 (Pandas.Series) – The second column

Returns:

Numeric field, or zero.

Return type:

Numeric

datacompy.core.columns_equal(col_1: SeriesType[Any], col_2: SeriesType[Any], rel_tol: float = 0, abs_tol: float = 0, ignore_spaces: bool = False, ignore_case: bool = False) SeriesType[bool]

Compare two columns from a dataframe.

Returns a True/False series, with the same index as column 1.

  • Two nulls (np.nan) will evaluate to True.

  • A null and a non-null value will evaluate to False.

  • Numeric values will use the relative and absolute tolerances.

  • Decimal values (decimal.Decimal) will attempt to be converted to floats before comparing

  • Non-numeric values (i.e. where np.isclose can’t be used) will just trigger True on two nulls or exact matches.

Notes

As of version 0.14.0 If a column is of a mixed data type the compare will default to returning False.

Parameters:
  • col_1 (Pandas.Series) – The first column to look at

  • col_2 (Pandas.Series) – The second column

  • rel_tol (float, optional) – Relative tolerance

  • abs_tol (float, optional) – Absolute tolerance

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns

  • ignore_case (bool, optional) – Flag to ignore the case of string columns

Returns:

A series of Boolean values. True == the values match, False == the values don’t match.

Return type:

pandas.Series

datacompy.core.compare_string_and_date_columns(col_1: SeriesType[Any], col_2: SeriesType[Any]) SeriesType[bool]

Compare a string column and date column, value-wise.

This tries to convert a string column to a date column and compare that way.

Parameters:
  • col_1 (Pandas.Series) – The first column to look at

  • col_2 (Pandas.Series) – The second column

Returns:

A series of Boolean values. True == the values match, False == the values don’t match.

Return type:

pandas.Series

datacompy.core.generate_id_within_group(dataframe: DataFrame, join_columns: List[str]) SeriesType[int]

Generate an ID column that can be used to deduplicate identical rows.

The series generated is the order within a unique group, and it handles nulls.

Parameters:
  • dataframe (Pandas.DataFrame) – The dataframe to operate on

  • join_columns (list) – List of strings which are the join columns

Returns:

The ID column that’s unique in each group.

Return type:

Pandas.Series

datacompy.core.get_merged_columns(original_df: DataFrame, merged_df: DataFrame, suffix: str) List[str]

Get the columns from an original dataframe, in the new merged dataframe.

Parameters:
  • original_df (Pandas.DataFrame) – The original, pre-merge dataframe

  • merged_df (Pandas.DataFrame) – Post-merge with another dataframe, with suffixes added in.

  • suffix (str) – What suffix was used to distinguish when the original dataframe was overlapping with the other merged dataframe.

datacompy.core.render(filename: str, *fields: int | float | str) str

Render out an individual template.

This basically just reads in a template file, and applies .format() on the fields.

Parameters:
  • filename (str) – The file that contains the template. Will automagically prepend the templates directory before opening

  • fields (list) – Fields to be rendered out in the template

Returns:

The fully rendered out file.

Return type:

str

datacompy.fugue module

Compare two DataFrames that are supported by Fugue.

datacompy.fugue.all_columns_match(df1: AnyDataFrame, df2: AnyDataFrame) bool

Whether the columns all match in the dataframes.

Parameters:
  • df1 (AnyDataFrame) – First dataframe to check

  • df2 (AnyDataFrame) – Second dataframe to check

Returns:

Boolean indicating whether the columns all match in the dataframes

Return type:

bool

datacompy.fugue.all_rows_overlap(df1: AnyDataFrame, df2: AnyDataFrame, join_columns: str | List[str], abs_tol: float = 0, rel_tol: float = 0, df1_name: str = 'df1', df2_name: str = 'df2', ignore_spaces: bool = False, ignore_case: bool = False, cast_column_names_lower: bool = True, parallelism: int | None = None, strict_schema: bool = False) bool

Check if the rows are all present in both dataframes.

Parameters:
  • df1 (AnyDataFrame) – First dataframe to check

  • df2 (AnyDataFrame) – Second dataframe to check

  • join_columns (list or str, optional) – Column(s) to join dataframes on. If a string is passed in, that one column will be used.

  • abs_tol (float, optional) – Absolute tolerance between two values.

  • rel_tol (float, optional) – Relative tolerance between two values.

  • df1_name (str, optional) – A string name for the first dataframe. This allows the reporting to print out an actual name instead of “df1”, and allows human users to more easily track the dataframes.

  • df2_name (str, optional) – A string name for the second dataframe

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns (including any join columns)

  • ignore_case (bool, optional) – Flag to ignore the case of string columns

  • cast_column_names_lower (bool, optional) – Boolean indicator that controls of column names will be cast into lower case

  • parallelism (int, optional) – An integer representing the amount of parallelism. Entering a value for this will force to use of Fugue over just vanilla Pandas

  • strict_schema (bool, optional) – The schema must match exactly if set to True. This includes the names and types. Allows for a fast fail.

Returns:

True if all rows in df1 are in df2 and vice versa (based on existence for join option)

Return type:

bool

datacompy.fugue.count_matching_rows(df1: AnyDataFrame, df2: AnyDataFrame, join_columns: str | List[str], abs_tol: float = 0, rel_tol: float = 0, df1_name: str = 'df1', df2_name: str = 'df2', ignore_spaces: bool = False, ignore_case: bool = False, cast_column_names_lower: bool = True, parallelism: int | None = None, strict_schema: bool = False) int

Count the number of rows match (on overlapping fields).

Parameters:
  • df1 (AnyDataFrame) – First dataframe to check

  • df2 (AnyDataFrame) – Second dataframe to check

  • join_columns (list or str, optional) – Column(s) to join dataframes on. If a string is passed in, that one column will be used.

  • abs_tol (float, optional) – Absolute tolerance between two values.

  • rel_tol (float, optional) – Relative tolerance between two values.

  • df1_name (str, optional) – A string name for the first dataframe. This allows the reporting to print out an actual name instead of “df1”, and allows human users to more easily track the dataframes.

  • df2_name (str, optional) – A string name for the second dataframe

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns (including any join columns)

  • ignore_case (bool, optional) – Flag to ignore the case of string columns

  • cast_column_names_lower (bool, optional) – Boolean indicator that controls of column names will be cast into lower case

  • parallelism (int, optional) – An integer representing the amount of parallelism. Entering a value for this will force to use of Fugue over just vanilla Pandas

  • strict_schema (bool, optional) – The schema must match exactly if set to True. This includes the names and types. Allows for a fast fail.

Returns:

Number of matching rows

Return type:

int

datacompy.fugue.intersect_columns(df1: AnyDataFrame, df2: AnyDataFrame) OrderedSet[str]

Get columns that are shared between the two dataframes.

Parameters:
  • df1 (AnyDataFrame) – First dataframe to check

  • df2 (AnyDataFrame) – Second dataframe to check

Returns:

Set of that are shared between the two dataframes

Return type:

OrderedSet

datacompy.fugue.is_match(df1: AnyDataFrame, df2: AnyDataFrame, join_columns: str | List[str], abs_tol: float = 0, rel_tol: float = 0, df1_name: str = 'df1', df2_name: str = 'df2', ignore_spaces: bool = False, ignore_case: bool = False, cast_column_names_lower: bool = True, parallelism: int | None = None, strict_schema: bool = False) bool

Check whether two dataframes match.

Both df1 and df2 should be dataframes containing all of the join_columns, with unique column names. Differences between values are compared to abs_tol + rel_tol * abs(df2[‘value’]).

Parameters:
  • df1 (AnyDataFrame) – First dataframe to check

  • df2 (AnyDataFrame) – Second dataframe to check

  • join_columns (list or str, optional) – Column(s) to join dataframes on. If a string is passed in, that one column will be used.

  • abs_tol (float, optional) – Absolute tolerance between two values.

  • rel_tol (float, optional) – Relative tolerance between two values.

  • df1_name (str, optional) – A string name for the first dataframe. This allows the reporting to print out an actual name instead of “df1”, and allows human users to more easily track the dataframes.

  • df2_name (str, optional) – A string name for the second dataframe

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns (including any join columns)

  • ignore_case (bool, optional) – Flag to ignore the case of string columns

  • cast_column_names_lower (bool, optional) – Boolean indicator that controls of column names will be cast into lower case

  • parallelism (int, optional) – An integer representing the amount of parallelism. Entering a value for this will force to use of Fugue over just vanilla Pandas

  • strict_schema (bool, optional) – The schema must match exactly if set to True. This includes the names and types. Allows for a fast fail.

Returns:

Returns boolean as to if the DataFrames match.

Return type:

bool

datacompy.fugue.report(df1: AnyDataFrame, df2: AnyDataFrame, join_columns: str | List[str], abs_tol: float = 0, rel_tol: float = 0, df1_name: str = 'df1', df2_name: str = 'df2', ignore_spaces: bool = False, ignore_case: bool = False, cast_column_names_lower: bool = True, sample_count: int = 10, column_count: int = 10, html_file: str | None = None, parallelism: int | None = None) str

Return a string representation of a report.

The representation can then be printed or saved to a file.

Both df1 and df2 should be dataframes containing all of the join_columns, with unique column names. Differences between values are compared to abs_tol + rel_tol * abs(df2[‘value’]).

Parameters:
  • df1 (AnyDataFrame) – First dataframe to check

  • df2 (AnyDataFrame) – Second dataframe to check

  • join_columns (list or str) – Column(s) to join dataframes on. If a string is passed in, that one column will be used.

  • abs_tol (float, optional) – Absolute tolerance between two values.

  • rel_tol (float, optional) – Relative tolerance between two values.

  • df1_name (str, optional) – A string name for the first dataframe. This allows the reporting to print out an actual name instead of “df1”, and allows human users to more easily track the dataframes.

  • df2_name (str, optional) – A string name for the second dataframe

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns (including any join columns)

  • ignore_case (bool, optional) – Flag to ignore the case of string columns

  • cast_column_names_lower (bool, optional) – Boolean indicator that controls of column names will be cast into lower case

  • parallelism (int, optional) – An integer representing the amount of parallelism. Entering a value for this will force to use of Fugue over just vanilla Pandas

  • strict_schema (bool, optional) – The schema must match exactly if set to True. This includes the names and types. Allows for a fast fail.

  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • column_count (int, optional) – The number of columns to display in the sample records output. Defaults to 10.

  • html_file (str, optional) – HTML file name to save report output to. If None the file creation will be skipped.

Returns:

The report, formatted kinda nicely.

Return type:

str

datacompy.fugue.unq_columns(df1: AnyDataFrame, df2: AnyDataFrame) OrderedSet[str]

Get columns that are unique to df1.

Parameters:
  • df1 (AnyDataFrame) – First dataframe to check

  • df2 (AnyDataFrame) – Second dataframe to check

Returns:

Set of columns that are unique to df1

Return type:

OrderedSet

datacompy.polars module

Compare two Polars DataFrames.

Originally this package was meant to provide similar functionality to PROC COMPARE in SAS - i.e. human-readable reporting on the difference between two dataframes.

class datacompy.polars.PolarsCompare(df1: DataFrame, df2: DataFrame, join_columns: List[str] | str, abs_tol: float = 0, rel_tol: float = 0, df1_name: str = 'df1', df2_name: str = 'df2', ignore_spaces: bool = False, ignore_case: bool = False, cast_column_names_lower: bool = True)

Bases: BaseCompare

Comparison class to be used to compare whether two dataframes as equal.

Both df1 and df2 should be dataframes containing all of the join_columns, with unique column names. Differences between values are compared to abs_tol + rel_tol * abs(df2[‘value’]).

Parameters:
  • df1 (Polars DataFrame) – First dataframe to check

  • df2 (Polars DataFrame) – Second dataframe to check

  • join_columns (list or str) – Column(s) to join dataframes on. If a string is passed in, that one column will be used.

  • abs_tol (float, optional) – Absolute tolerance between two values.

  • rel_tol (float, optional) – Relative tolerance between two values.

  • df1_name (str, optional) – A string name for the first dataframe. This allows the reporting to print out an actual name instead of “df1”, and allows human users to more easily track the dataframes.

  • df2_name (str, optional) – A string name for the second dataframe

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns (including any join columns)

  • ignore_case (bool, optional) – Flag to ignore the case of string columns

  • cast_column_names_lower (bool, optional) – Boolean indicator that controls of column names will be cast into lower case

Variables:
  • df1_unq_rows (Polars DataFrame) – All records that are only in df1 (based on a join on join_columns)

  • df2_unq_rows (Polars DataFrame) – All records that are only in df2 (based on a join on join_columns)

all_columns_match() bool

Whether the columns all match in the dataframes.

all_mismatch(ignore_matching_cols: bool = False) DataFrame

Get all rows with any columns that have a mismatch.

Returns all df1 and df2 versions of the columns and join columns.

Parameters:

ignore_matching_cols (bool, optional) – Whether showing the matching columns in the output or not. The default is False.

Returns:

All rows of the intersection dataframe, containing any columns, that don’t match.

Return type:

Polars.DataFrame

all_rows_overlap() bool

Whether the rows are all present in both dataframes.

Returns:

True if all rows in df1 are in df2 and vice versa (based on existence for join option)

Return type:

bool

count_matching_rows() int

Count the number of rows match (on overlapping fields).

Returns:

Number of matching rows

Return type:

int

property df1: DataFrame

Get the first dataframe.

df1_unq_columns() OrderedSet[str]

Get columns that are unique to df1.

property df2: DataFrame

Get the second dataframe.

df2_unq_columns() OrderedSet[str]

Get columns that are unique to df2.

intersect_columns() OrderedSet[str]

Get columns that are shared between the two dataframes.

intersect_rows_match() bool

Check whether the intersect rows all match.

matches(ignore_extra_columns: bool = False) bool

Return True or False if the dataframes match.

Parameters:

ignore_extra_columns (bool) – Ignores any columns in one dataframe and not in the other.

Returns:

True or False if the dataframes match.

Return type:

bool

report(sample_count: int = 10, column_count: int = 10, html_file: str | None = None) str

Return a string representation of a report.

The representation can then be printed or saved to a file.

Parameters:
  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • column_count (int, optional) – The number of columns to display in the sample records output. Defaults to 10.

  • html_file (str, optional) – HTML file name to save report output to. If None the file creation will be skipped.

Returns:

The report, formatted kinda nicely.

Return type:

str

sample_mismatch(column: str, sample_count: int = 10, for_display: bool = False) DataFrame

Return sample mismatches.

Get a sub-dataframe which contains the identifying columns, and df1 and df2 versions of the column.

Parameters:
  • column (str) – The raw column name (i.e. without _df1 appended)

  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • for_display (bool, optional) – Whether this is just going to be used for display (overwrite the column names)

Returns:

A sample of the intersection dataframe, containing only the “pertinent” columns, for rows that don’t match on the provided column.

Return type:

Polars.DataFrame

subset() bool

Return True if dataframe 2 is a subset of dataframe 1.

Dataframe 2 is considered a subset if all of its columns are in dataframe 1, and all of its rows match rows in dataframe 1 for the shared columns.

Returns:

True if dataframe 2 is a subset of dataframe 1.

Return type:

bool

datacompy.polars.calculate_max_diff(col_1: Series, col_2: Series) float

Get a maximum difference between two columns.

Parameters:
  • col_1 (Polars.Series) – The first column

  • col_2 (Polars.Series) – The second column

Returns:

Numeric field, or zero.

Return type:

Numeric

datacompy.polars.columns_equal(col_1: Series, col_2: Series, rel_tol: float = 0, abs_tol: float = 0, ignore_spaces: bool = False, ignore_case: bool = False) Series

Compare two columns from a dataframe.

Returns a True/False series, with the same index as column 1.

  • Two nulls (np.nan) will evaluate to True.

  • A null and a non-null value will evaluate to False.

  • Numeric values will use the relative and absolute tolerances.

  • Decimal values (decimal.Decimal) will attempt to be converted to floats before comparing

  • Non-numeric values (i.e. where np.isclose can’t be used) will just trigger True on two nulls or exact matches.

Parameters:
  • col_1 (Polars.Series) – The first column to look at

  • col_2 (Polars.Series) – The second column

  • rel_tol (float, optional) – Relative tolerance

  • abs_tol (float, optional) – Absolute tolerance

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns

  • ignore_case (bool, optional) – Flag to ignore the case of string columns

Returns:

A series of Boolean values. True == the values match, False == the values don’t match.

Return type:

Polars.Series

datacompy.polars.compare_string_and_date_columns(col_1: Series, col_2: Series) Series

Compare a string column and date column, value-wise.

This tries to convert a string column to a date column and compare that way.

Parameters:
  • col_1 (Polars.Series) – The first column to look at

  • col_2 (Polars.Series) – The second column

Returns:

A series of Boolean values. True == the values match, False == the values don’t match.

Return type:

Polars.Series

datacompy.polars.generate_id_within_group(dataframe: DataFrame, join_columns: List[str]) Series

Generate an ID column that can be used to deduplicate identical rows.

The series generated is the order within a unique group, and it handles nulls.

Parameters:
  • dataframe (Polars.DataFrame) – The dataframe to operate on

  • join_columns (list) – List of strings which are the join columns

Returns:

The ID column that’s unique in each group.

Return type:

Polars.Series

datacompy.polars.get_merged_columns(original_df: DataFrame, merged_df: DataFrame, suffix: str) List[str]

Get the columns from an original dataframe, in the new merged dataframe.

Parameters:
  • original_df (Polars.DataFrame) – The original, pre-merge dataframe

  • merged_df (Polars.DataFrame) – Post-merge with another dataframe, with suffixes added in.

  • suffix (str) – What suffix was used to distinguish when the original dataframe was overlapping with the other merged dataframe.

datacompy.polars.render(filename: str, *fields: int | float | str) str

Render out an individual template.

This basically just reads in a template file, and applies .format() on the fields.

Parameters:
  • filename (str) – The file that contains the template. Will automagically prepend the templates directory before opening

  • fields (list) – Fields to be rendered out in the template

Returns:

The fully rendered out file.

Return type:

str

datacompy.snowflake module

Compare two Snowpark SQL DataFrames and Snowflake tables.

Originally this package was meant to provide similar functionality to PROC COMPARE in SAS - i.e. human-readable reporting on the difference between two dataframes.

class datacompy.snowflake.SnowflakeCompare(session: Session, df1: str | DataFrame, df2: str | DataFrame, join_columns: str | List[str] | None, abs_tol: float = 0, rel_tol: float = 0, df1_name: str | None = None, df2_name: str | None = None, ignore_spaces: bool = False)

Bases: BaseCompare

Comparison class to be used to compare whether two Snowpark dataframes are equal.

df1 and df2 can refer to either a Snowpark dataframe or the name of a valid Snowflake table. The data structures which df1 and df2 represent must contain all of the join_columns, with unique column names. Differences between values are compared to abs_tol + rel_tol * abs(df2[‘value’]).

Parameters:
  • session (snowflake.snowpark.session) – Session with the required connection session info for user and targeted tables

  • df1 (Union[str, sp.Dataframe]) – First table to check, provided either as the table’s name or as a Snowpark DF.

  • df2 (Union[str, sp.Dataframe]) – Second table to check, provided either as the table’s name or as a Snowpark DF.

  • join_columns (list or str, optional) – Column(s) to join dataframes on. If a string is passed in, that one column will be used.

  • abs_tol (float, optional) – Absolute tolerance between two values.

  • rel_tol (float, optional) – Relative tolerance between two values.

  • df1_name (str, optional) – A string name for the first dataframe. If used alongside a snowflake table, overrides the default convention of naming the dataframe after the table.

  • df2_name (str, optional) – A string name for the second dataframe.

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns (including any join columns).

Variables:
  • df1_unq_rows (sp.DataFrame) – All records that are only in df1 (based on a join on join_columns)

  • df2_unq_rows (sp.DataFrame) – All records that are only in df2 (based on a join on join_columns)

all_columns_match() bool

Whether the columns all match in the dataframes.

Returns:

  • bool

  • True if all columns in df1 are in df2 and vice versa

all_mismatch(ignore_matching_cols: bool = False) DataFrame

Get all rows with any columns that have a mismatch.

Returns all df1 and df2 versions of the columns and join columns.

Parameters:

ignore_matching_cols (bool, optional) – Whether showing the matching columns in the output or not. The default is False.

Returns:

All rows of the intersection dataframe, containing any columns, that don’t match.

Return type:

sp.DataFrame

all_rows_overlap() bool

Whether the rows are all present in both dataframes.

Returns:

True if all rows in df1 are in df2 and vice versa (based on existence for join option)

Return type:

bool

count_matching_rows() int

Count the number of rows match (on overlapping fields).

Returns:

Number of matching rows

Return type:

int

property df1: DataFrame

Get the first dataframe.

df1_unq_columns() OrderedSet[str]

Get columns that are unique to df1.

property df2: DataFrame

Get the second dataframe.

df2_unq_columns() OrderedSet[str]

Get columns that are unique to df2.

intersect_columns() OrderedSet[str]

Get columns that are shared between the two dataframes.

intersect_rows_match() bool

Check whether the intersect rows all match.

matches(ignore_extra_columns: bool = False) bool

Return True or False if the dataframes match.

Parameters:

ignore_extra_columns (bool) – Ignores any columns in one dataframe and not in the other.

Returns:

True or False if the dataframes match.

Return type:

bool

report(sample_count: int = 10, column_count: int = 10, html_file: str | None = None) str

Return a string representation of a report.

The representation can then be printed or saved to a file.

Parameters:
  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • column_count (int, optional) – The number of columns to display in the sample records output. Defaults to 10.

  • html_file (str, optional) – HTML file name to save report output to. If None the file creation will be skipped.

Returns:

The report, formatted kinda nicely.

Return type:

str

sample_mismatch(column: str, sample_count: int = 10, for_display: bool = False) DataFrame

Return sample mismatches.

Gets a sub-dataframe which contains the identifying columns, and df1 and df2 versions of the column.

Parameters:
  • column (str) – The raw column name (i.e. without _df1 appended)

  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • for_display (bool, optional) – Whether this is just going to be used for display (overwrite the column names)

Returns:

A sample of the intersection dataframe, containing only the “pertinent” columns, for rows that don’t match on the provided column.

Return type:

sp.DataFrame

subset() bool

Return True if dataframe 2 is a subset of dataframe 1.

Dataframe 2 is considered a subset if all of its columns are in dataframe 1, and all of its rows match rows in dataframe 1 for the shared columns.

Returns:

True if dataframe 2 is a subset of dataframe 1.

Return type:

bool

datacompy.snowflake.calculate_max_diff(dataframe: DataFrame, col_1: str, col_2: str) float

Get a maximum difference between two columns.

Parameters:
  • dataframe (sp.DataFrame) – DataFrame to do comparison on

  • col_1 (str) – The first column to look at

  • col_2 (str) – The second column

Returns:

max diff

Return type:

float

datacompy.snowflake.calculate_null_diff(dataframe: DataFrame, col_1: str, col_2: str) int

Get the null differences between two columns.

Parameters:
  • dataframe (sp.DataFrame) – DataFrame to do comparison on

  • col_1 (str) – The first column to look at

  • col_2 (str) – The second column

Returns:

null diff

Return type:

int

datacompy.snowflake.columns_equal(dataframe: DataFrame, col_1: str, col_2: str, col_match: str, rel_tol: float = 0, abs_tol: float = 0, ignore_spaces: bool = False) DataFrame

Compare two columns from a dataframe.

Returns a True/False series with the same index as column 1.

  • Two nulls (np.nan) will evaluate to True.

  • A null and a non-null value will evaluate to False.

  • Numeric values will use the relative and absolute tolerances.

  • Decimal values (decimal.Decimal) will attempt to be converted to floats before comparing

  • Non-numeric values (i.e. where np.isclose can’t be used) will just trigger True on two nulls or exact matches.

Parameters:
  • dataframe (sp.DataFrame) – DataFrame to do comparison on

  • col_1 (str) – The first column to look at

  • col_2 (str) – The second column

  • col_match (str) – The matching column denoting if the compare was a match or not

  • rel_tol (float, optional) – Relative tolerance

  • abs_tol (float, optional) – Absolute tolerance

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns

Returns:

A column of boolean values are added. True == the values match, False == the values don’t match.

Return type:

sp.DataFrame

datacompy.snowflake.get_merged_columns(original_df: DataFrame, merged_df: DataFrame, suffix: str) List[str]

Get the columns from an original dataframe, in the new merged dataframe.

Parameters:
  • original_df (sp.DataFrame) – The original, pre-merge dataframe

  • merged_df (sp.DataFrame) – Post-merge with another dataframe, with suffixes added in.

  • suffix (str) – What suffix was used to distinguish when the original dataframe was overlapping with the other merged dataframe.

Returns:

Column list of the original dataframe pre suffix

Return type:

List[str]

datacompy.snowflake.render(filename: str, *fields: int | float | str) str

Render out an individual template.

This basically just reads in a template file, and applies .format() on the fields.

Parameters:
  • filename (str) – The file that contains the template. Will automagically prepend the templates directory before opening

  • fields (list) – Fields to be rendered out in the template

Returns:

The fully rendered out file.

Return type:

str

datacompy.snowflake.temp_column_name(*dataframes) str

Get a temp column name that isn’t included in columns of any dataframes.

Parameters:

dataframes (list of DataFrames) – The DataFrames to create a temporary column name for

Returns:

String column name that looks like ‘_temp_x’ for some integer x

Return type:

str

Module contents

DataComPy is a package to compare two Pandas DataFrames.

Originally started to be something of a replacement for SAS’s PROC COMPARE for Pandas DataFrames with some more functionality than just Pandas.DataFrame.equals(Pandas.DataFrame) (in that it prints out some stats, and lets you tweak how accurate matches have to be). Then extended to carry that functionality over to Spark Dataframes.

class datacompy.BaseCompare

Bases: ABC

Base comparison class.

abstract all_columns_match() bool

Check if all columns match.

abstract all_mismatch(ignore_matching_cols: bool = False) Any

Get all rows that mismatch.

abstract all_rows_overlap() bool

Check if all rows overlap.

abstract count_matching_rows() int

Count the number of matchin grows.

abstract property df1: Any

Get the first dataframe.

abstract df1_unq_columns() OrderedSet[str]

Get columns that are unique to df1.

abstract property df2: Any

Get the second dataframe.

abstract df2_unq_columns() OrderedSet[str]

Get columns that are unique to df2.

abstract intersect_columns() OrderedSet[str]

Get columns that are shared between the two dataframes.

abstract intersect_rows_match() bool

Check if the intersection of rows match.

abstract matches(ignore_extra_columns: bool = False) bool

Check if the dataframes match.

abstract report(sample_count: int = 10, column_count: int = 10, html_file: str | None = None) str

Return a string representation of a report.

abstract sample_mismatch(column: str, sample_count: int = 10, for_display: bool = False) Any

Get a sample of rows that mismatch.

abstract subset() bool

Check if one dataframe is a subset of the other.

class datacompy.Compare(df1: DataFrame, df2: DataFrame, join_columns: List[str] | str | None = None, on_index: bool = False, abs_tol: float = 0, rel_tol: float = 0, df1_name: str = 'df1', df2_name: str = 'df2', ignore_spaces: bool = False, ignore_case: bool = False, cast_column_names_lower: bool = True)

Bases: BaseCompare

Comparison class to be used to compare whether two dataframes as equal.

Both df1 and df2 should be dataframes containing all of the join_columns, with unique column names. Differences between values are compared to abs_tol + rel_tol * abs(df2[‘value’]).

Parameters:
  • df1 (pandas DataFrame) – First dataframe to check

  • df2 (pandas DataFrame) – Second dataframe to check

  • join_columns (list or str, optional) – Column(s) to join dataframes on. If a string is passed in, that one column will be used.

  • on_index (bool, optional) – If True, the index will be used to join the two dataframes. If both join_columns and on_index are provided, an exception will be raised.

  • abs_tol (float, optional) – Absolute tolerance between two values.

  • rel_tol (float, optional) – Relative tolerance between two values.

  • df1_name (str, optional) – A string name for the first dataframe. This allows the reporting to print out an actual name instead of “df1”, and allows human users to more easily track the dataframes.

  • df2_name (str, optional) – A string name for the second dataframe

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns (including any join columns)

  • ignore_case (bool, optional) – Flag to ignore the case of string columns

  • cast_column_names_lower (bool, optional) – Boolean indicator that controls of column names will be cast into lower case

Variables:
  • df1_unq_rows (pandas DataFrame) – All records that are only in df1 (based on a join on join_columns)

  • df2_unq_rows (pandas DataFrame) – All records that are only in df2 (based on a join on join_columns)

all_columns_match() bool

Whether the columns all match in the dataframes.

all_mismatch(ignore_matching_cols: bool = False) DataFrame

Get all rows with any columns that have a mismatch.

Returns all df1 and df2 versions of the columns and join columns.

Parameters:

ignore_matching_cols (bool, optional) – Whether showing the matching columns in the output or not. The default is False.

Returns:

All rows of the intersection dataframe, containing any columns, that don’t match.

Return type:

Pandas.DataFrame

all_rows_overlap() bool

Whether the rows are all present in both dataframes.

Returns:

True if all rows in df1 are in df2 and vice versa (based on existence for join option)

Return type:

bool

count_matching_rows() int

Count the number of rows match (on overlapping fields).

Returns:

Number of matching rows

Return type:

int

property df1: DataFrame

Get the first dataframe.

df1_unq_columns() OrderedSet[str]

Get columns that are unique to df1.

property df2: DataFrame

Get the second dataframe.

df2_unq_columns() OrderedSet[str]

Get columns that are unique to df2.

intersect_columns() OrderedSet[str]

Get columns that are shared between the two dataframes.

intersect_rows_match() bool

Check whether the intersect rows all match.

matches(ignore_extra_columns: bool = False) bool

Return True or False if the dataframes match.

Parameters:

ignore_extra_columns (bool) – Ignores any columns in one dataframe and not in the other.

Returns:

True or False if the dataframes match.

Return type:

bool

report(sample_count: int = 10, column_count: int = 10, html_file: str | None = None) str

Return a string representation of a report.

The representation can then be printed or saved to a file.

Parameters:
  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • column_count (int, optional) – The number of columns to display in the sample records output. Defaults to 10.

  • html_file (str, optional) – HTML file name to save report output to. If None the file creation will be skipped.

Returns:

The report, formatted kinda nicely.

Return type:

str

sample_mismatch(column: str, sample_count: int = 10, for_display: bool = False) DataFrame

Return sample mismatches.

Gets a sub-dataframe which contains the identifying columns, and df1 and df2 versions of the column.

Parameters:
  • column (str) – The raw column name (i.e. without _df1 appended)

  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • for_display (bool, optional) – Whether this is just going to be used for display (overwrite the column names)

Returns:

A sample of the intersection dataframe, containing only the “pertinent” columns, for rows that don’t match on the provided column.

Return type:

Pandas.DataFrame

subset() bool

Return True if dataframe 2 is a subset of dataframe 1.

Dataframe 2 is considered a subset if all of its columns are in dataframe 1, and all of its rows match rows in dataframe 1 for the shared columns.

Returns:

True if dataframe 2 is a subset of dataframe 1.

Return type:

bool

class datacompy.PolarsCompare(df1: DataFrame, df2: DataFrame, join_columns: List[str] | str, abs_tol: float = 0, rel_tol: float = 0, df1_name: str = 'df1', df2_name: str = 'df2', ignore_spaces: bool = False, ignore_case: bool = False, cast_column_names_lower: bool = True)

Bases: BaseCompare

Comparison class to be used to compare whether two dataframes as equal.

Both df1 and df2 should be dataframes containing all of the join_columns, with unique column names. Differences between values are compared to abs_tol + rel_tol * abs(df2[‘value’]).

Parameters:
  • df1 (Polars DataFrame) – First dataframe to check

  • df2 (Polars DataFrame) – Second dataframe to check

  • join_columns (list or str) – Column(s) to join dataframes on. If a string is passed in, that one column will be used.

  • abs_tol (float, optional) – Absolute tolerance between two values.

  • rel_tol (float, optional) – Relative tolerance between two values.

  • df1_name (str, optional) – A string name for the first dataframe. This allows the reporting to print out an actual name instead of “df1”, and allows human users to more easily track the dataframes.

  • df2_name (str, optional) – A string name for the second dataframe

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns (including any join columns)

  • ignore_case (bool, optional) – Flag to ignore the case of string columns

  • cast_column_names_lower (bool, optional) – Boolean indicator that controls of column names will be cast into lower case

Variables:
  • df1_unq_rows (Polars DataFrame) – All records that are only in df1 (based on a join on join_columns)

  • df2_unq_rows (Polars DataFrame) – All records that are only in df2 (based on a join on join_columns)

all_columns_match() bool

Whether the columns all match in the dataframes.

all_mismatch(ignore_matching_cols: bool = False) DataFrame

Get all rows with any columns that have a mismatch.

Returns all df1 and df2 versions of the columns and join columns.

Parameters:

ignore_matching_cols (bool, optional) – Whether showing the matching columns in the output or not. The default is False.

Returns:

All rows of the intersection dataframe, containing any columns, that don’t match.

Return type:

Polars.DataFrame

all_rows_overlap() bool

Whether the rows are all present in both dataframes.

Returns:

True if all rows in df1 are in df2 and vice versa (based on existence for join option)

Return type:

bool

count_matching_rows() int

Count the number of rows match (on overlapping fields).

Returns:

Number of matching rows

Return type:

int

property df1: DataFrame

Get the first dataframe.

df1_unq_columns() OrderedSet[str]

Get columns that are unique to df1.

property df2: DataFrame

Get the second dataframe.

df2_unq_columns() OrderedSet[str]

Get columns that are unique to df2.

intersect_columns() OrderedSet[str]

Get columns that are shared between the two dataframes.

intersect_rows_match() bool

Check whether the intersect rows all match.

matches(ignore_extra_columns: bool = False) bool

Return True or False if the dataframes match.

Parameters:

ignore_extra_columns (bool) – Ignores any columns in one dataframe and not in the other.

Returns:

True or False if the dataframes match.

Return type:

bool

report(sample_count: int = 10, column_count: int = 10, html_file: str | None = None) str

Return a string representation of a report.

The representation can then be printed or saved to a file.

Parameters:
  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • column_count (int, optional) – The number of columns to display in the sample records output. Defaults to 10.

  • html_file (str, optional) – HTML file name to save report output to. If None the file creation will be skipped.

Returns:

The report, formatted kinda nicely.

Return type:

str

sample_mismatch(column: str, sample_count: int = 10, for_display: bool = False) DataFrame

Return sample mismatches.

Get a sub-dataframe which contains the identifying columns, and df1 and df2 versions of the column.

Parameters:
  • column (str) – The raw column name (i.e. without _df1 appended)

  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • for_display (bool, optional) – Whether this is just going to be used for display (overwrite the column names)

Returns:

A sample of the intersection dataframe, containing only the “pertinent” columns, for rows that don’t match on the provided column.

Return type:

Polars.DataFrame

subset() bool

Return True if dataframe 2 is a subset of dataframe 1.

Dataframe 2 is considered a subset if all of its columns are in dataframe 1, and all of its rows match rows in dataframe 1 for the shared columns.

Returns:

True if dataframe 2 is a subset of dataframe 1.

Return type:

bool

class datacompy.SnowflakeCompare(session: Session, df1: str | DataFrame, df2: str | DataFrame, join_columns: str | List[str] | None, abs_tol: float = 0, rel_tol: float = 0, df1_name: str | None = None, df2_name: str | None = None, ignore_spaces: bool = False)

Bases: BaseCompare

Comparison class to be used to compare whether two Snowpark dataframes are equal.

df1 and df2 can refer to either a Snowpark dataframe or the name of a valid Snowflake table. The data structures which df1 and df2 represent must contain all of the join_columns, with unique column names. Differences between values are compared to abs_tol + rel_tol * abs(df2[‘value’]).

Parameters:
  • session (snowflake.snowpark.session) – Session with the required connection session info for user and targeted tables

  • df1 (Union[str, sp.Dataframe]) – First table to check, provided either as the table’s name or as a Snowpark DF.

  • df2 (Union[str, sp.Dataframe]) – Second table to check, provided either as the table’s name or as a Snowpark DF.

  • join_columns (list or str, optional) – Column(s) to join dataframes on. If a string is passed in, that one column will be used.

  • abs_tol (float, optional) – Absolute tolerance between two values.

  • rel_tol (float, optional) – Relative tolerance between two values.

  • df1_name (str, optional) – A string name for the first dataframe. If used alongside a snowflake table, overrides the default convention of naming the dataframe after the table.

  • df2_name (str, optional) – A string name for the second dataframe.

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns (including any join columns).

Variables:
  • df1_unq_rows (sp.DataFrame) – All records that are only in df1 (based on a join on join_columns)

  • df2_unq_rows (sp.DataFrame) – All records that are only in df2 (based on a join on join_columns)

all_columns_match() bool

Whether the columns all match in the dataframes.

Returns:

  • bool

  • True if all columns in df1 are in df2 and vice versa

all_mismatch(ignore_matching_cols: bool = False) DataFrame

Get all rows with any columns that have a mismatch.

Returns all df1 and df2 versions of the columns and join columns.

Parameters:

ignore_matching_cols (bool, optional) – Whether showing the matching columns in the output or not. The default is False.

Returns:

All rows of the intersection dataframe, containing any columns, that don’t match.

Return type:

sp.DataFrame

all_rows_overlap() bool

Whether the rows are all present in both dataframes.

Returns:

True if all rows in df1 are in df2 and vice versa (based on existence for join option)

Return type:

bool

count_matching_rows() int

Count the number of rows match (on overlapping fields).

Returns:

Number of matching rows

Return type:

int

property df1: DataFrame

Get the first dataframe.

df1_unq_columns() OrderedSet[str]

Get columns that are unique to df1.

property df2: DataFrame

Get the second dataframe.

df2_unq_columns() OrderedSet[str]

Get columns that are unique to df2.

intersect_columns() OrderedSet[str]

Get columns that are shared between the two dataframes.

intersect_rows_match() bool

Check whether the intersect rows all match.

matches(ignore_extra_columns: bool = False) bool

Return True or False if the dataframes match.

Parameters:

ignore_extra_columns (bool) – Ignores any columns in one dataframe and not in the other.

Returns:

True or False if the dataframes match.

Return type:

bool

report(sample_count: int = 10, column_count: int = 10, html_file: str | None = None) str

Return a string representation of a report.

The representation can then be printed or saved to a file.

Parameters:
  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • column_count (int, optional) – The number of columns to display in the sample records output. Defaults to 10.

  • html_file (str, optional) – HTML file name to save report output to. If None the file creation will be skipped.

Returns:

The report, formatted kinda nicely.

Return type:

str

sample_mismatch(column: str, sample_count: int = 10, for_display: bool = False) DataFrame

Return sample mismatches.

Gets a sub-dataframe which contains the identifying columns, and df1 and df2 versions of the column.

Parameters:
  • column (str) – The raw column name (i.e. without _df1 appended)

  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • for_display (bool, optional) – Whether this is just going to be used for display (overwrite the column names)

Returns:

A sample of the intersection dataframe, containing only the “pertinent” columns, for rows that don’t match on the provided column.

Return type:

sp.DataFrame

subset() bool

Return True if dataframe 2 is a subset of dataframe 1.

Dataframe 2 is considered a subset if all of its columns are in dataframe 1, and all of its rows match rows in dataframe 1 for the shared columns.

Returns:

True if dataframe 2 is a subset of dataframe 1.

Return type:

bool

class datacompy.SparkPandasCompare(df1: DataFrame, df2: DataFrame, join_columns: List[str] | str, abs_tol: float = 0, rel_tol: float = 0, df1_name: str = 'df1', df2_name: str = 'df2', ignore_spaces: bool = False, ignore_case: bool = False, cast_column_names_lower: bool = True)

Bases: BaseCompare

Comparison class to be used to compare whether two Pandas on Spark dataframes are equal.

Both df1 and df2 should be dataframes containing all of the join_columns, with unique column names. Differences between values are compared to abs_tol + rel_tol * abs(df2[‘value’]).

Parameters:
  • df1 (pyspark.pandas.frame.DataFrame) – First dataframe to check

  • df2 (pyspark.pandas.frame.DataFrame) – Second dataframe to check

  • join_columns (list or str, optional) – Column(s) to join dataframes on. If a string is passed in, that one column will be used.

  • abs_tol (float, optional) – Absolute tolerance between two values.

  • rel_tol (float, optional) – Relative tolerance between two values.

  • df1_name (str, optional) – A string name for the first dataframe. This allows the reporting to print out an actual name instead of “df1”, and allows human users to more easily track the dataframes.

  • df2_name (str, optional) – A string name for the second dataframe

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns (including any join columns)

  • ignore_case (bool, optional) – Flag to ignore the case of string columns

  • cast_column_names_lower (bool, optional) – Boolean indicator that controls of column names will be cast into lower case

Variables:
  • df1_unq_rows (pyspark.pandas.frame.DataFrame) – All records that are only in df1 (based on a join on join_columns)

  • df2_unq_rows (pyspark.pandas.frame.DataFrame) – All records that are only in df2 (based on a join on join_columns)

all_columns_match() bool

Whether the columns all match in the dataframes.

all_mismatch(ignore_matching_cols: bool = False) DataFrame

Get all rows with any columns that have a mismatch.

Returns all df1 and df2 versions of the columns and join columns.

Parameters:

ignore_matching_cols (bool, optional) – Whether showing the matching columns in the output or not. The default is False.

Returns:

All rows of the intersection dataframe, containing any columns, that don’t match.

Return type:

pyspark.pandas.frame.DataFrame

all_rows_overlap() bool

Whether the rows are all present in both dataframes.

Returns:

True if all rows in df1 are in df2 and vice versa (based on existence for join option)

Return type:

bool

count_matching_rows() bool

Count the number of rows match (on overlapping fields).

Returns:

Number of matching rows

Return type:

int

property df1: DataFrame

Get the first dataframe.

df1_unq_columns() OrderedSet[str]

Get columns that are unique to df1.

property df2: DataFrame

Get the second dataframe.

df2_unq_columns() OrderedSet[str]

Get columns that are unique to df2.

intersect_columns() OrderedSet[str]

Get columns that are shared between the two dataframes.

intersect_rows_match() bool

Check whether the intersect rows all match.

matches(ignore_extra_columns: bool = False) bool

Return True or False if the dataframes match.

Parameters:

ignore_extra_columns (bool) – Ignores any columns in one dataframe and not in the other.

report(sample_count: int = 10, column_count: int = 10, html_file: str | None = None) str

Return a string representation of a report.

The representation can then be printed or saved to a file.

Parameters:
  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • column_count (int, optional) – The number of columns to display in the sample records output. Defaults to 10.

  • html_file (str, optional) – HTML file name to save report output to. If None the file creation will be skipped.

Returns:

The report, formatted kinda nicely.

Return type:

str

sample_mismatch(column: str, sample_count: int = 10, for_display: bool = False) DataFrame

Return sample mismatches.

Gets a sub-dataframe which contains the identifying columns, and df1 and df2 versions of the column.

Parameters:
  • column (str) – The raw column name (i.e. without _df1 appended)

  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • for_display (bool, optional) – Whether this is just going to be used for display (overwrite the column names)

Returns:

A sample of the intersection dataframe, containing only the “pertinent” columns, for rows that don’t match on the provided column.

Return type:

pyspark.pandas.frame.DataFrame

subset() bool

Return True if dataframe 2 is a subset of dataframe 1.

Dataframe 2 is considered a subset if all of its columns are in dataframe 1, and all of its rows match rows in dataframe 1 for the shared columns.

Returns:

True if dataframe 2 is a subset of dataframe 1.

Return type:

bool

class datacompy.SparkSQLCompare(spark_session: SparkSession, df1: DataFrame, df2: DataFrame, join_columns: List[str] | str, abs_tol: float = 0, rel_tol: float = 0, df1_name: str = 'df1', df2_name: str = 'df2', ignore_spaces: bool = False, ignore_case: bool = False, cast_column_names_lower: bool = True)

Bases: BaseCompare

Comparison class to be used to compare whether two Spark SQL dataframes are equal.

Both df1 and df2 should be dataframes containing all of the join_columns, with unique column names. Differences between values are compared to abs_tol + rel_tol * abs(df2[‘value’]).

Parameters:
  • spark_session (pyspark.sql.SparkSession) – A SparkSession to be used to execute Spark commands in the comparison.

  • df1 (pyspark.sql.DataFrame) – First dataframe to check

  • df2 (pyspark.sql.DataFrame) – Second dataframe to check

  • join_columns (list or str, optional) – Column(s) to join dataframes on. If a string is passed in, that one column will be used.

  • abs_tol (float, optional) – Absolute tolerance between two values.

  • rel_tol (float, optional) – Relative tolerance between two values.

  • df1_name (str, optional) – A string name for the first dataframe. This allows the reporting to print out an actual name instead of “df1”, and allows human users to more easily track the dataframes.

  • df2_name (str, optional) – A string name for the second dataframe

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns (including any join columns)

  • ignore_case (bool, optional) – Flag to ignore the case of string columns

  • cast_column_names_lower (bool, optional) – Boolean indicator that controls of column names will be cast into lower case

Variables:
  • df1_unq_rows (pyspark.sql.DataFrame) – All records that are only in df1 (based on a join on join_columns)

  • df2_unq_rows (pyspark.sql.DataFrame) – All records that are only in df2 (based on a join on join_columns)

  • intersect_rows (pyspark.sql.DataFrame) – All records that are in both df1 and df2

all_columns_match() bool

Whether the columns all match in the dataframes.

Returns:

True if all columns in df1 are in df2 and vice versa

Return type:

bool

all_mismatch(ignore_matching_cols: bool = False) DataFrame

Get all rows with any columns that have a mismatch.

Returns all df1 and df2 versions of the columns and join columns.

Parameters:

ignore_matching_cols (bool, optional) – Whether showing the matching columns in the output or not. The default is False.

Returns:

All rows of the intersection dataframe, containing any columns, that don’t match.

Return type:

pyspark.sql.DataFrame

all_rows_overlap() bool

Whether the rows are all present in both dataframes.

Returns:

True if all rows in df1 are in df2 and vice versa (based on existence for join option)

Return type:

bool

count_matching_rows() int

Count the number of rows match (on overlapping fields).

Returns:

Number of matching rows

Return type:

int

property df1: DataFrame

Get the first dataframe.

df1_unq_columns() OrderedSet[str]

Get columns that are unique to df1.

property df2: DataFrame

Get the second dataframe.

df2_unq_columns() OrderedSet[str]

Get columns that are unique to df2.

intersect_columns() OrderedSet[str]

Get columns that are shared between the two dataframes.

intersect_rows_match() bool

Check whether the intersect rows all match.

matches(ignore_extra_columns: bool = False) bool

Return True or False if the dataframes match.

Parameters:

ignore_extra_columns (bool) – Ignores any columns in one dataframe and not in the other.

report(sample_count: int = 10, column_count: int = 10, html_file: str | None = None) str

Return a string representation of a report.

The representation can then be printed or saved to a file.

Parameters:
  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • column_count (int, optional) – The number of columns to display in the sample records output. Defaults to 10.

  • html_file (str, optional) – HTML file name to save report output to. If None the file creation will be skipped.

Returns:

The report, formatted kinda nicely.

Return type:

str

sample_mismatch(column: str, sample_count: int = 10, for_display: bool = False) DataFrame

Return sample mismatches.

Gets a sub-dataframe which contains the identifying columns, and df1 and df2 versions of the column.

Parameters:
  • column (str) – The raw column name (i.e. without _df1 appended)

  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • for_display (bool, optional) – Whether this is just going to be used for display (overwrite the column names)

Returns:

A sample of the intersection dataframe, containing only the “pertinent” columns, for rows that don’t match on the provided column.

Return type:

pyspark.sql.DataFrame

subset() bool

Return True if dataframe 2 is a subset of dataframe 1.

Dataframe 2 is considered a subset if all of its columns are in dataframe 1, and all of its rows match rows in dataframe 1 for the shared columns.

Returns:

True if dataframe 2 is a subset of dataframe 1.

Return type:

bool

datacompy.all_columns_match(df1: AnyDataFrame, df2: AnyDataFrame) bool

Whether the columns all match in the dataframes.

Parameters:
  • df1 (AnyDataFrame) – First dataframe to check

  • df2 (AnyDataFrame) – Second dataframe to check

Returns:

Boolean indicating whether the columns all match in the dataframes

Return type:

bool

datacompy.all_rows_overlap(df1: AnyDataFrame, df2: AnyDataFrame, join_columns: str | List[str], abs_tol: float = 0, rel_tol: float = 0, df1_name: str = 'df1', df2_name: str = 'df2', ignore_spaces: bool = False, ignore_case: bool = False, cast_column_names_lower: bool = True, parallelism: int | None = None, strict_schema: bool = False) bool

Check if the rows are all present in both dataframes.

Parameters:
  • df1 (AnyDataFrame) – First dataframe to check

  • df2 (AnyDataFrame) – Second dataframe to check

  • join_columns (list or str, optional) – Column(s) to join dataframes on. If a string is passed in, that one column will be used.

  • abs_tol (float, optional) – Absolute tolerance between two values.

  • rel_tol (float, optional) – Relative tolerance between two values.

  • df1_name (str, optional) – A string name for the first dataframe. This allows the reporting to print out an actual name instead of “df1”, and allows human users to more easily track the dataframes.

  • df2_name (str, optional) – A string name for the second dataframe

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns (including any join columns)

  • ignore_case (bool, optional) – Flag to ignore the case of string columns

  • cast_column_names_lower (bool, optional) – Boolean indicator that controls of column names will be cast into lower case

  • parallelism (int, optional) – An integer representing the amount of parallelism. Entering a value for this will force to use of Fugue over just vanilla Pandas

  • strict_schema (bool, optional) – The schema must match exactly if set to True. This includes the names and types. Allows for a fast fail.

Returns:

True if all rows in df1 are in df2 and vice versa (based on existence for join option)

Return type:

bool

datacompy.calculate_max_diff(col_1: SeriesType[Any], col_2: SeriesType[Any]) float

Get a maximum difference between two columns.

Parameters:
  • col_1 (Pandas.Series) – The first column

  • col_2 (Pandas.Series) – The second column

Returns:

Numeric field, or zero.

Return type:

Numeric

datacompy.columns_equal(col_1: SeriesType[Any], col_2: SeriesType[Any], rel_tol: float = 0, abs_tol: float = 0, ignore_spaces: bool = False, ignore_case: bool = False) SeriesType[bool]

Compare two columns from a dataframe.

Returns a True/False series, with the same index as column 1.

  • Two nulls (np.nan) will evaluate to True.

  • A null and a non-null value will evaluate to False.

  • Numeric values will use the relative and absolute tolerances.

  • Decimal values (decimal.Decimal) will attempt to be converted to floats before comparing

  • Non-numeric values (i.e. where np.isclose can’t be used) will just trigger True on two nulls or exact matches.

Notes

As of version 0.14.0 If a column is of a mixed data type the compare will default to returning False.

Parameters:
  • col_1 (Pandas.Series) – The first column to look at

  • col_2 (Pandas.Series) – The second column

  • rel_tol (float, optional) – Relative tolerance

  • abs_tol (float, optional) – Absolute tolerance

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns

  • ignore_case (bool, optional) – Flag to ignore the case of string columns

Returns:

A series of Boolean values. True == the values match, False == the values don’t match.

Return type:

pandas.Series

datacompy.compare_string_and_date_columns(col_1: SeriesType[Any], col_2: SeriesType[Any]) SeriesType[bool]

Compare a string column and date column, value-wise.

This tries to convert a string column to a date column and compare that way.

Parameters:
  • col_1 (Pandas.Series) – The first column to look at

  • col_2 (Pandas.Series) – The second column

Returns:

A series of Boolean values. True == the values match, False == the values don’t match.

Return type:

pandas.Series

datacompy.count_matching_rows(df1: AnyDataFrame, df2: AnyDataFrame, join_columns: str | List[str], abs_tol: float = 0, rel_tol: float = 0, df1_name: str = 'df1', df2_name: str = 'df2', ignore_spaces: bool = False, ignore_case: bool = False, cast_column_names_lower: bool = True, parallelism: int | None = None, strict_schema: bool = False) int

Count the number of rows match (on overlapping fields).

Parameters:
  • df1 (AnyDataFrame) – First dataframe to check

  • df2 (AnyDataFrame) – Second dataframe to check

  • join_columns (list or str, optional) – Column(s) to join dataframes on. If a string is passed in, that one column will be used.

  • abs_tol (float, optional) – Absolute tolerance between two values.

  • rel_tol (float, optional) – Relative tolerance between two values.

  • df1_name (str, optional) – A string name for the first dataframe. This allows the reporting to print out an actual name instead of “df1”, and allows human users to more easily track the dataframes.

  • df2_name (str, optional) – A string name for the second dataframe

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns (including any join columns)

  • ignore_case (bool, optional) – Flag to ignore the case of string columns

  • cast_column_names_lower (bool, optional) – Boolean indicator that controls of column names will be cast into lower case

  • parallelism (int, optional) – An integer representing the amount of parallelism. Entering a value for this will force to use of Fugue over just vanilla Pandas

  • strict_schema (bool, optional) – The schema must match exactly if set to True. This includes the names and types. Allows for a fast fail.

Returns:

Number of matching rows

Return type:

int

datacompy.generate_id_within_group(dataframe: DataFrame, join_columns: List[str]) SeriesType[int]

Generate an ID column that can be used to deduplicate identical rows.

The series generated is the order within a unique group, and it handles nulls.

Parameters:
  • dataframe (Pandas.DataFrame) – The dataframe to operate on

  • join_columns (list) – List of strings which are the join columns

Returns:

The ID column that’s unique in each group.

Return type:

Pandas.Series

datacompy.get_merged_columns(original_df: DataFrame, merged_df: DataFrame, suffix: str) List[str]

Get the columns from an original dataframe, in the new merged dataframe.

Parameters:
  • original_df (Pandas.DataFrame) – The original, pre-merge dataframe

  • merged_df (Pandas.DataFrame) – Post-merge with another dataframe, with suffixes added in.

  • suffix (str) – What suffix was used to distinguish when the original dataframe was overlapping with the other merged dataframe.

datacompy.intersect_columns(df1: AnyDataFrame, df2: AnyDataFrame) OrderedSet[str]

Get columns that are shared between the two dataframes.

Parameters:
  • df1 (AnyDataFrame) – First dataframe to check

  • df2 (AnyDataFrame) – Second dataframe to check

Returns:

Set of that are shared between the two dataframes

Return type:

OrderedSet

datacompy.is_match(df1: AnyDataFrame, df2: AnyDataFrame, join_columns: str | List[str], abs_tol: float = 0, rel_tol: float = 0, df1_name: str = 'df1', df2_name: str = 'df2', ignore_spaces: bool = False, ignore_case: bool = False, cast_column_names_lower: bool = True, parallelism: int | None = None, strict_schema: bool = False) bool

Check whether two dataframes match.

Both df1 and df2 should be dataframes containing all of the join_columns, with unique column names. Differences between values are compared to abs_tol + rel_tol * abs(df2[‘value’]).

Parameters:
  • df1 (AnyDataFrame) – First dataframe to check

  • df2 (AnyDataFrame) – Second dataframe to check

  • join_columns (list or str, optional) – Column(s) to join dataframes on. If a string is passed in, that one column will be used.

  • abs_tol (float, optional) – Absolute tolerance between two values.

  • rel_tol (float, optional) – Relative tolerance between two values.

  • df1_name (str, optional) – A string name for the first dataframe. This allows the reporting to print out an actual name instead of “df1”, and allows human users to more easily track the dataframes.

  • df2_name (str, optional) – A string name for the second dataframe

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns (including any join columns)

  • ignore_case (bool, optional) – Flag to ignore the case of string columns

  • cast_column_names_lower (bool, optional) – Boolean indicator that controls of column names will be cast into lower case

  • parallelism (int, optional) – An integer representing the amount of parallelism. Entering a value for this will force to use of Fugue over just vanilla Pandas

  • strict_schema (bool, optional) – The schema must match exactly if set to True. This includes the names and types. Allows for a fast fail.

Returns:

Returns boolean as to if the DataFrames match.

Return type:

bool

datacompy.render(filename: str, *fields: int | float | str) str

Render out an individual template.

This basically just reads in a template file, and applies .format() on the fields.

Parameters:
  • filename (str) – The file that contains the template. Will automagically prepend the templates directory before opening

  • fields (list) – Fields to be rendered out in the template

Returns:

The fully rendered out file.

Return type:

str

datacompy.report(df1: AnyDataFrame, df2: AnyDataFrame, join_columns: str | List[str], abs_tol: float = 0, rel_tol: float = 0, df1_name: str = 'df1', df2_name: str = 'df2', ignore_spaces: bool = False, ignore_case: bool = False, cast_column_names_lower: bool = True, sample_count: int = 10, column_count: int = 10, html_file: str | None = None, parallelism: int | None = None) str

Return a string representation of a report.

The representation can then be printed or saved to a file.

Both df1 and df2 should be dataframes containing all of the join_columns, with unique column names. Differences between values are compared to abs_tol + rel_tol * abs(df2[‘value’]).

Parameters:
  • df1 (AnyDataFrame) – First dataframe to check

  • df2 (AnyDataFrame) – Second dataframe to check

  • join_columns (list or str) – Column(s) to join dataframes on. If a string is passed in, that one column will be used.

  • abs_tol (float, optional) – Absolute tolerance between two values.

  • rel_tol (float, optional) – Relative tolerance between two values.

  • df1_name (str, optional) – A string name for the first dataframe. This allows the reporting to print out an actual name instead of “df1”, and allows human users to more easily track the dataframes.

  • df2_name (str, optional) – A string name for the second dataframe

  • ignore_spaces (bool, optional) – Flag to strip whitespace (including newlines) from string columns (including any join columns)

  • ignore_case (bool, optional) – Flag to ignore the case of string columns

  • cast_column_names_lower (bool, optional) – Boolean indicator that controls of column names will be cast into lower case

  • parallelism (int, optional) – An integer representing the amount of parallelism. Entering a value for this will force to use of Fugue over just vanilla Pandas

  • strict_schema (bool, optional) – The schema must match exactly if set to True. This includes the names and types. Allows for a fast fail.

  • sample_count (int, optional) – The number of sample records to return. Defaults to 10.

  • column_count (int, optional) – The number of columns to display in the sample records output. Defaults to 10.

  • html_file (str, optional) – HTML file name to save report output to. If None the file creation will be skipped.

Returns:

The report, formatted kinda nicely.

Return type:

str

datacompy.temp_column_name(*dataframes) str

Get a temp column name that isn’t included in columns of any dataframes.

Parameters:

dataframes (list of DataFrames) – The DataFrames to create a temporary column name for

Returns:

String column name that looks like ‘_temp_x’ for some integer x

Return type:

str

datacompy.unq_columns(df1: AnyDataFrame, df2: AnyDataFrame) OrderedSet[str]

Get columns that are unique to df1.

Parameters:
  • df1 (AnyDataFrame) – First dataframe to check

  • df2 (AnyDataFrame) – Second dataframe to check

Returns:

Set of columns that are unique to df1

Return type:

OrderedSet