dataprofiler.profilers.datetime_column_profile module

Contains class for profiling datetime column.

class dataprofiler.profilers.datetime_column_profile.DateTimeColumn(name: str | None, options: DateTimeOptions = None)

Bases: BaseColumnPrimitiveTypeProfiler[DateTimeColumn]

Datetime column profile subclass of BaseColumnProfiler.

Represents a column int the dataset which is a datetime column.

Initialize it and the column base properties.

Parameters:
  • name (String) – Name of the data

  • options (DateTimeOptions) – Options for the datetime column

type = 'datetime'
report(remove_disabled_flag: bool = False) dict

Return report.

Private abstract method.

Parameters:

remove_disabled_flag (boolean) – flag to determine if disabled options should be excluded in the report.

classmethod load_from_dict(data, config: dict | None = None)

Parse attribute from json dictionary into self.

Parameters:
  • data (dict[string, Any]) – dictionary with attributes and values.

  • config (Dict | None) – config for loading column profiler params from dictionary

Returns:

Profiler with attributes populated.

Return type:

DateTimeColumn

property profile: dict

Return the profile of the column.

property data_type_ratio: float | None

Calculate the ratio of samples which match this data type.

Returns:

ratio of data type

Return type:

float

diff(other_profile: DateTimeColumn, options: dict | None = None) dict

Generate differences between max, min, and formats of two DateTime cols.

Returns:

Dict containing the differences between max, min, and format in their

appropriate output formats :rtype: dict

update(df_series: Series) DateTimeColumn

Update the column profile.

Parameters:

df_series (pandas.core.series.Series) – df series

Returns:

None

col_type = None
match_count: int
sample_size: int
name: str | None
metadata: dict
times: dict
thread_safe: bool